

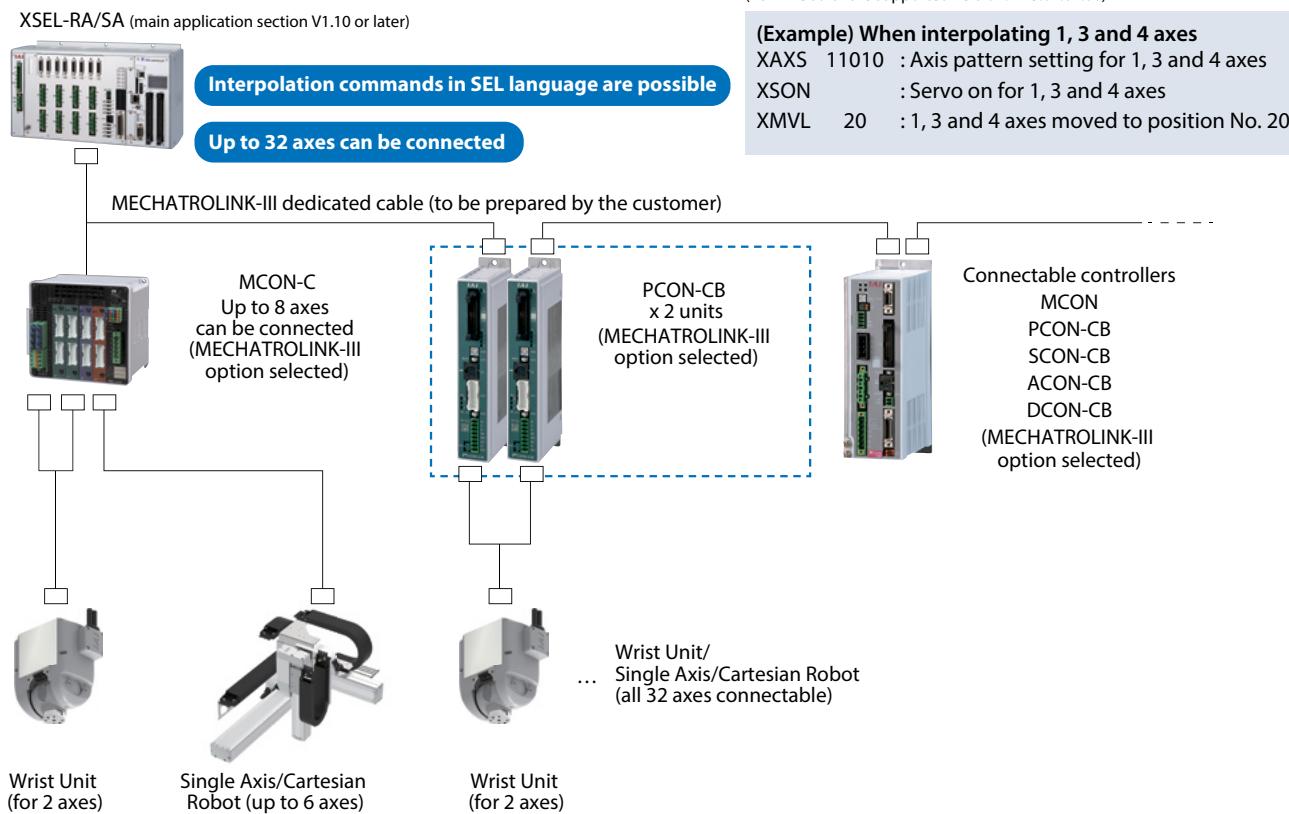
XSEL-RA/SA expanded motion control function (equipped as standard)

1. Interpolation command of Cartesian Robot + Wrist Unit possible

(Note) It is not possible to interpolate between an actuator directly connected to XSEL and an actuator connected to the controller on the network.

2. What to prepare

- (1) XSEL-RA/SA controller (equipped with expanded motion function as standard)
- (2) MECHATROLINK-III dedicated cable (to be prepared by the customer)
- (3) MCON-C, P/A/D/SCON-CB as needed (MECHATROLINK-III option selected)


* Please contact our sales representative for Wrist Unit control using expanded motion control with the XSEL-RA/SA controller.

Program example

(XSEL PC software supported version: V13.02.04.00)

(Example) When interpolating 1, 3 and 4 axes

XAXS 11010 : Axis pattern setting for 1, 3 and 4 axes
 XSON : Servo on for 1, 3 and 4 axes
 XMVL 20 : 1, 3 and 4 axes moved to position No. 20

IAI America, Inc.

Headquarters: 2690 W. 237th Street, Torrance, CA 90505 (800) 736-1712

Chicago Office: 110 E. State Pkwy, Schaumburg, IL 60173 (800) 944-0333

Atlanta Office: 1220 Kennestone Circle, Suite 108, Marietta, GA 30066 (888) 354-9470

www.intelligentactuator.com

The information contained in this product brochure may change without prior notice due to product improvements.

IAI Industrieroboter GmbH

Ober der Röth 4, D-65824 Schwalbach am Taunus, Germany

IAI (Shanghai) Co., Ltd.

Shanghai Jiahua Business Center A8-303, 808, Hongqiao Rd., Shanghai 200030, China

IAI Robot (Thailand) Co., Ltd.

825 Phairojkija Tower 12th Floor, Bangna-Trad RD., Bangna, Bangna, Bangkok 10260, Thailand

**WU-S /
WU-M**

Rotating joint 2-axis unit

Wrist Unit is now available

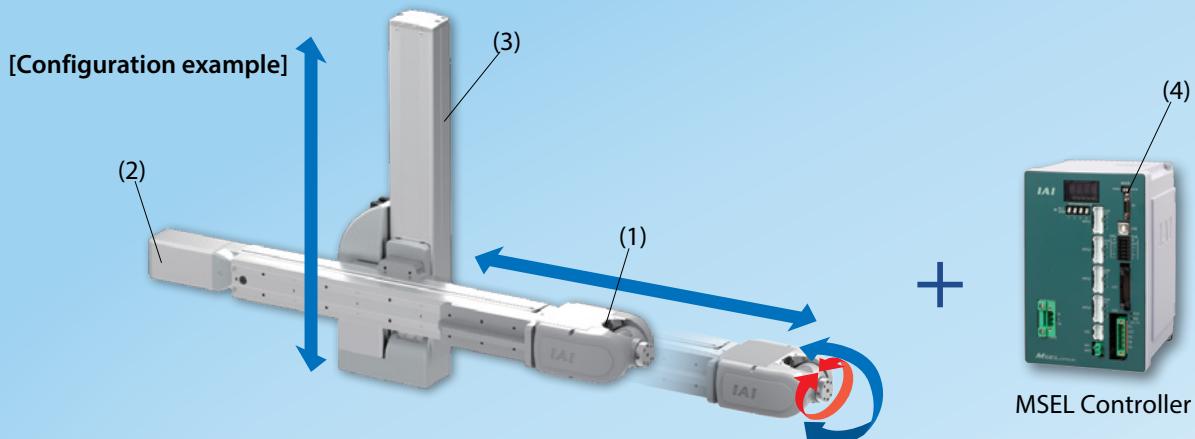
1

IAI's Unique design makes the parts light and compact.

Equipped with a Battery-less Absolute Encoder as Standard

Small S type

Medium M type



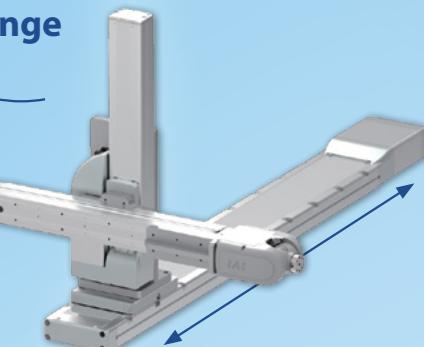
2

Ideal for reducing the cost of equipment.
Low cost compared to 6-axis articulated robots.

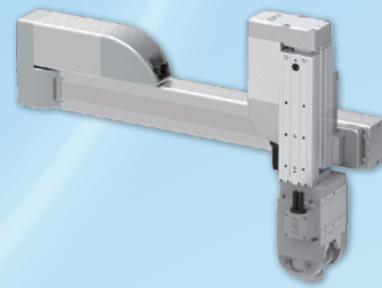
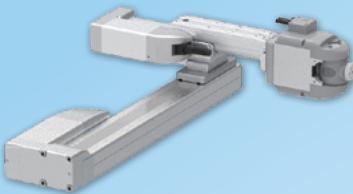
Diagonal approaches and tip swiveling, possible until now only with vertically articulated robots, can now be performed with the minimum required axis configuration.

Ideal for reducing the cost of equipment.

(1) Wrist Unit:	WU-S	
(2) Table Type:	RCP6-TA6C	Stroke: 320 mm
(3) Slider Type:	RCP6-SA7R	Stroke: 300 mm
(4) Controller:	MSEL	

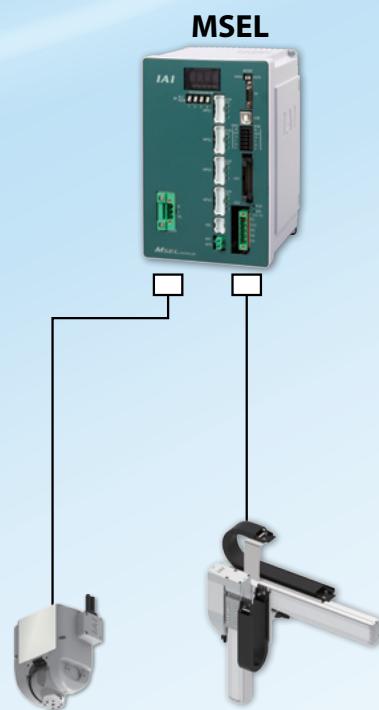

Work in tight spaces

Combination with a high-straightness cartesian robot makes it capable of avoiding obstacles and working in tight spaces.



Work in a wide operation range

It is also ideal for work with a wide operation range.

Flexible combinations


The combination pattern, number of axes and stroke can be freely selected according to the application.

3 Orthogonal axes and interpolation commands are possible

(1) When connecting Wrist Unit and 2-axis actuator^{(*)1}

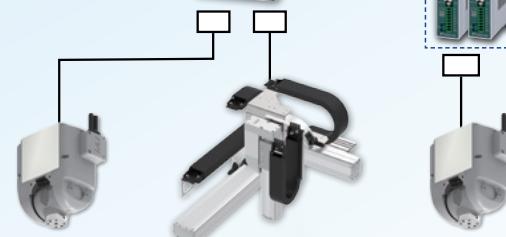
*1 Stepper motor mounted actuator

(2) When connecting Wrist Unit and 3-axis or more actuator^{(*)2}

*2 Stepper/servo motor mounted actuator

XSEL-RA/SA expanded motion control function (equipped as standard)

* Please refer to P.19 for more information.



MECHATROLINK-III dedicated cable

MCON-C

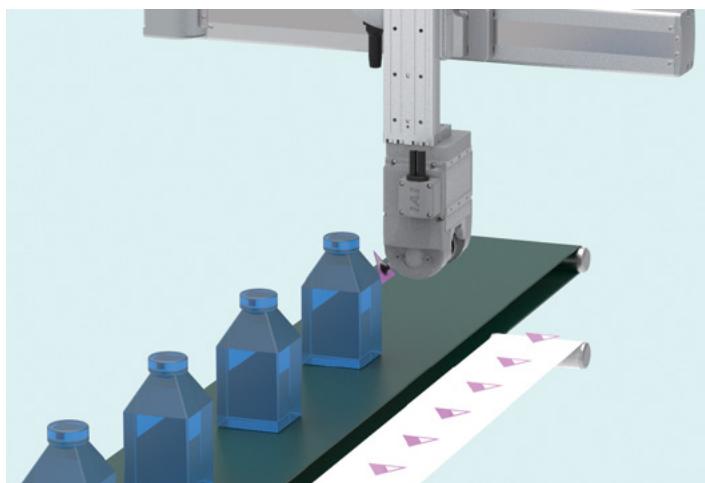
PCON-CB

MCON
PCON-CB
SCON-CB
ACON-CB
DCON-CB
(MECHATROLINK-III option selected)

Wrist Unit/Single Axis/Cartesian Robot (all 32 axes connectable)

Wrist Unit
(for 2 axes)

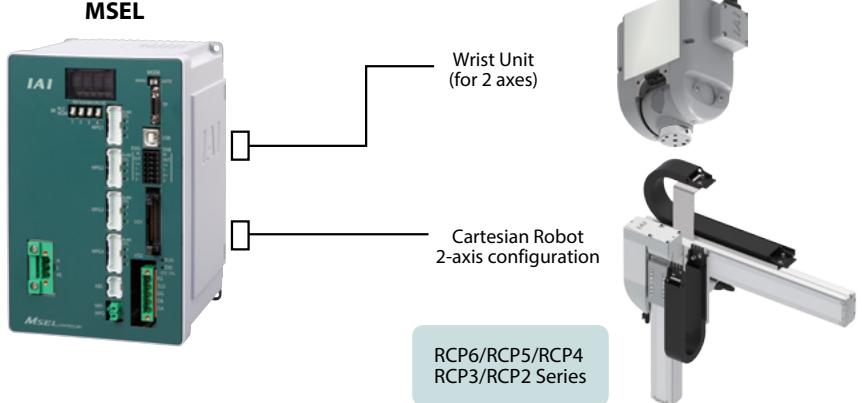
Single Axis/Cartesian
Robot (up to 2 axes)


Wrist Unit
(for 2 axes)

Single Axis/Cartesian
Robot (up to 6 axes)

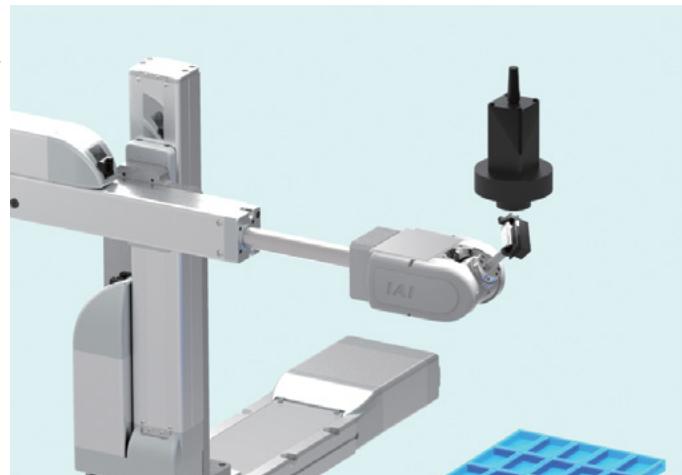
Application Examples

Bottle labeling equipment


This device affixes labels to bottles. Adjusts the angle to the labeling surface on the B-axis and rotates the label on the T-axis to change the orientation.

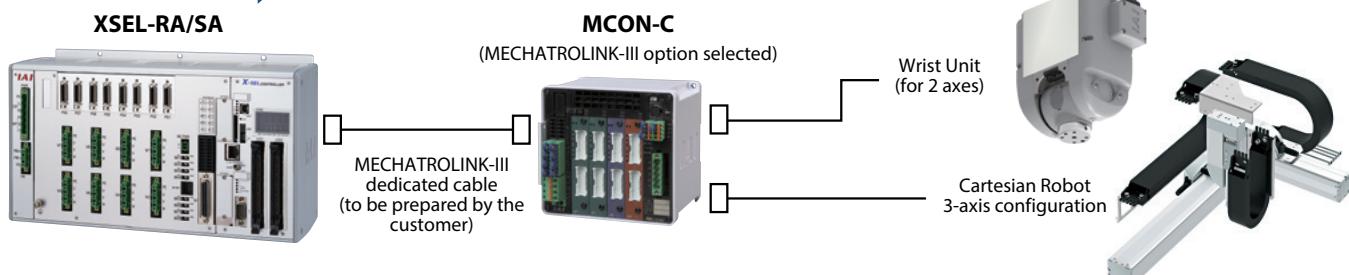
Controller connection example

"Wrist Unit + ROBO Cylinder 2-axis configuration" can be controlled with a single MSEL controller.


Please refer to P.17 for more information.

Automotive connector inspection equipment

This device inspects the external view of connectors for automobiles, using a camera.


The Wrist Unit rotates the connector for inspection from various angles.

Controller connection example

"Wrist Unit + ROBO Cylinder 3-axis configuration" can be controlled with the MCON controller, using XSEL-RA/SA expanded motion control.

Please refer to P.19 for more information.

WU Series List

Type	Compact type		Medium type	
Model	WU-S		WU-M	
External view				
Axis configuration	B-axis (wrist swing)	T-axis (wrist rotation)	B-axis (wrist swing)	T-axis (wrist rotation)
Operation range	±100 deg.	±360 deg.	±105 deg.	±360 deg.
Max. torque *1	0.65N·m	0.65N·m	1.65N·m	1.65N·m
Max. allowable moment of inertia *2	0.0085kgm ²	0.0075kgm ²	0.015kgm ²	0.0165kgm ²
Max. load weight	1kg		2kg	
Max. speed *3	Independent operation	750 deg/s	1200 deg/s	900 deg/s
	Simultaneous operation of the B- and T-axes	600 deg/s	600 deg/s	600 deg/s
Max. acceleration/deceleration	Without load torque *4	0.7 G (6865 deg/s ²)	0.7 G (6865 deg/s ²)	0.7 G (6865 deg/s ²)
	With load torque *4	0.3 G (2942 deg/s ²)	0.3 G (2942 deg/s ²)	0.3 G (2942 deg/s ²)
Motor type	28□ Stepper motor	28□ Stepper motor	35□ Stepper motor	35□ Stepper motor
Unit weight	1.6kg		2.8kg	
Reference page	P.13		P.15	

*1 Indicates the maximum torque at low speed. The output torque varies with the speed.

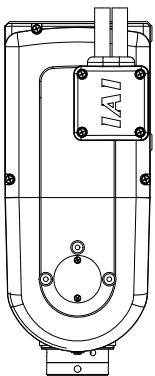
*2 Indicates the maximum moment of inertia in rotation. Value when the acceleration is 0.3 G.

*3 Maximum set speed with no load.

*4 When the rotational axes of the B-axis and T-axis are horizontal with respect to the floor surface or when the center of gravity of the transported object is offset from the rotational axis, the unit will be subject to load torque due to the weight of the object. The allowable moment of inertia decreases when load torque is present. Please refer to "Model Selection Process (P.7 on)" for more information.

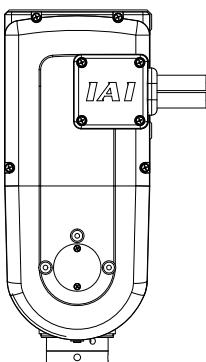
Model Specification Items

Options

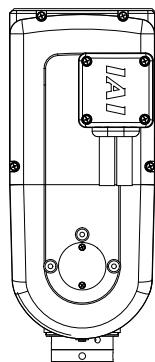

Cable exit direction

Model **A1 / A2 / A3**

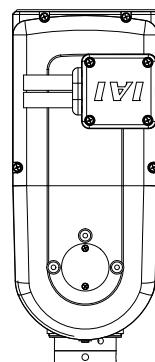
Description Specify when changing the Actuator's pigtail cable exit direction.


Top direction exit (standard)

■ No option specified (blank)


Exit to right side

■ Option specified: A1


Exit to bottom

■ Option specified: A2

Exit to left side

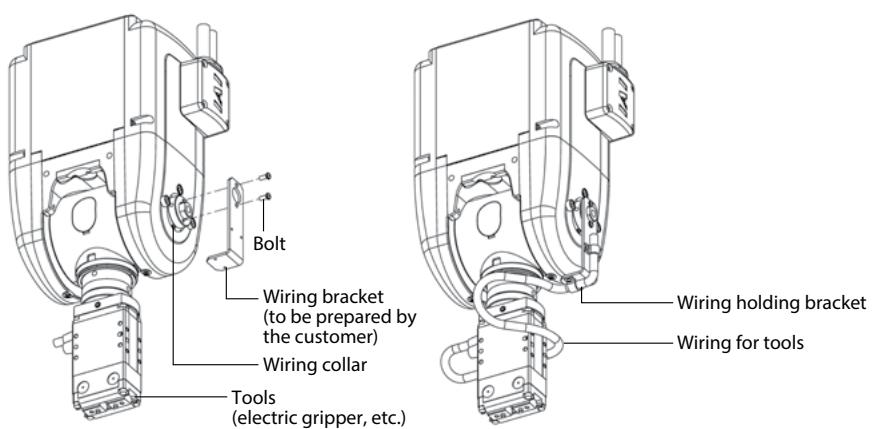
■ Option specified: A3

Actuator's pigtail cable length change

Model **AC1.5**

Description This option extends the length of the Actuator's pigtail cable exiting the actuator body to 1.5 m. (Standard length is 0.2 m)
When this option is selected, the maximum cable length between the actuator and controller will be 18 m (X18, R18).

With air fitting


Model **VC**

Description This option allows attachment of an air fitting (ø6) for connecting pneumatic devices such as vacuum pads to the side of the main body. It is mounted on the same side as the Actuator's pigtail cable outlet. Please refer to the dimensions on the product pages. (WU-S: P.14, WU-M: P.16)

With wiring collar

Model **WCS**

Description When using electric grippers or similar wiring is made easy by using the wiring collar.
Use the wiring collar as the base to which the wiring bracket (to be prepared by the customer) is to be attached.
Please refer to the dimensions on the product pages. (WU-S: P.14, WU-M: P.16)

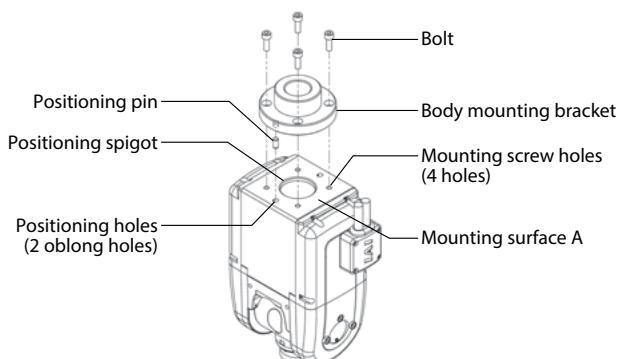
Cable (air fitting) in opposite position

Model **CVR**

Description This option allows the Actuator's pigtail cable outlet, air fitting, and wiring collar (optional) to be mounted on the other side (opposite position). Please refer to the dimensions on the product pages. (WU-S: P.14, WU-M: P.16)

Reference Data

Mounting Method

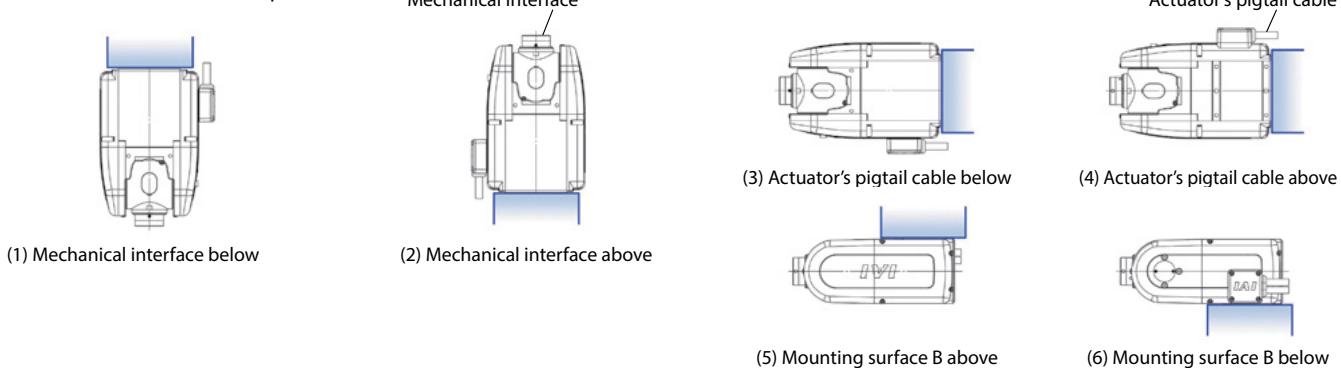

■ Body mounting method

The body mounting surface should be a machined surface or a plane with similar accuracy.

The actuator has screw holes and positioning holes for body mounting on the top (mounting surface A) and side (mounting surface B). For details on positions and dimensions, refer to the product pages.

(1) When using mounting surface A

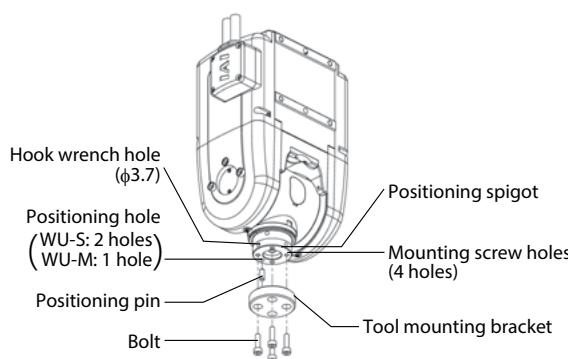
(Thread depth WU-S: M4 through (screw depth: 6) / WU-M: M5 through (screw depth: 10)


(2) When using mounting surface B

(Thread depth WU-S: M4 depth 8 / WU-M: M5 depth 10)

■ Body installation orientation

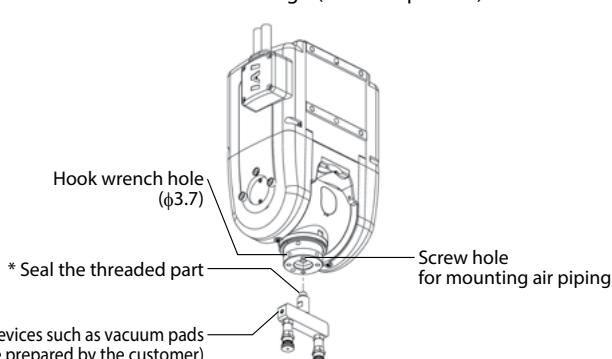
All 6 orientations below are possible.


■ Tool mounting method

The unit is provided with screw holes for bracket mounting to the body tip (mechanical interface), screw holes for air piping mounting, and positioning holes. Refer to the dimensions (WU-S: P.12, WU-M: P.14) for details regarding the position and dimensions.

Do not apply excessive force to the output shaft when tightening bolts or air piping threads. The mechanical interface is provided with holes for a hook wrench. Use these to fix the output shaft in the rotating direction.

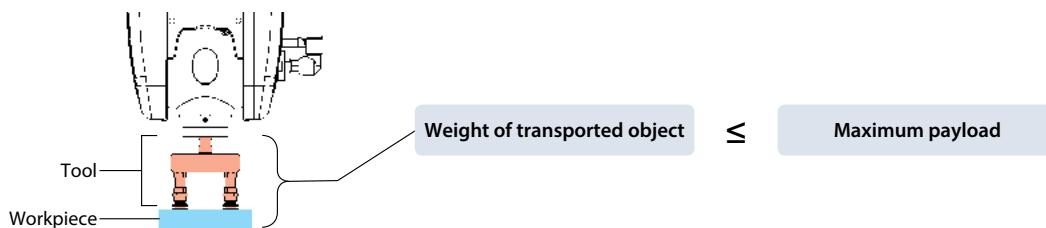
(1) When using bracket mounting screws


(Thread depth WU-S: M4 depth 6 / WU-M: M4 through (screw depth: 6)

(2) When using air piping mounting screws

Seal the threaded part of the air piping with sealing tape, etc.

(Thread depth WU-S: M6 through (screw depth: 4.5) / WU-M: M6 through (screw depth: 4.5)

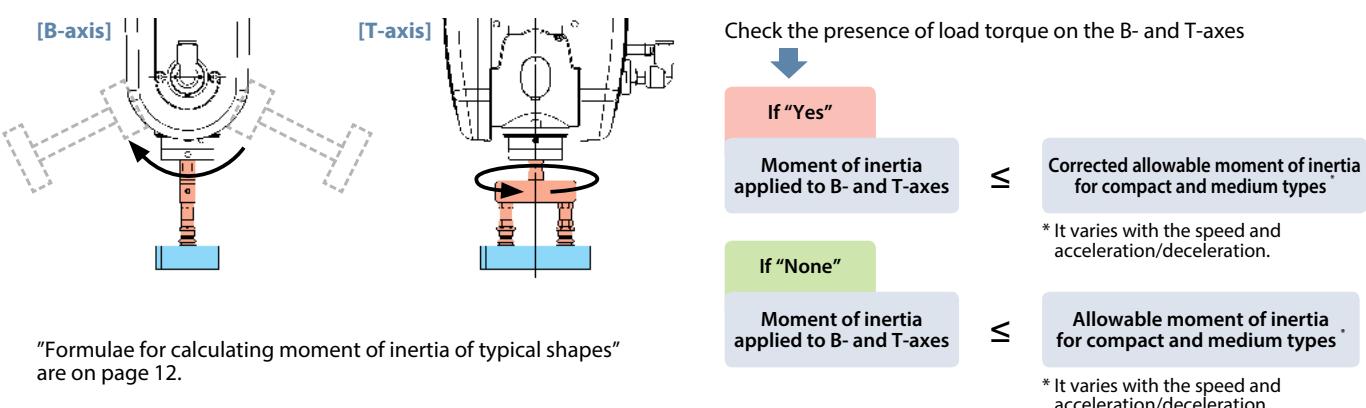


Model Selection Process

Follow steps 1 through 4. For a selection example, refer to the following pages.

Step 1

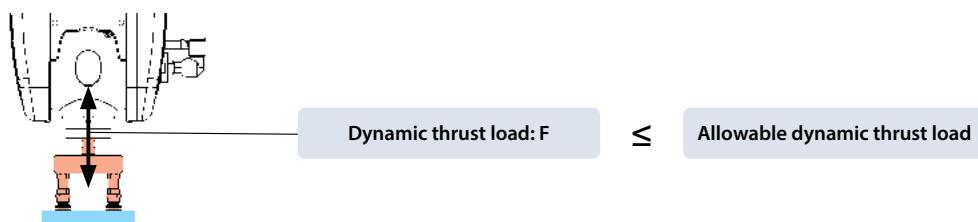
Check the weight of the transported object



Step 2

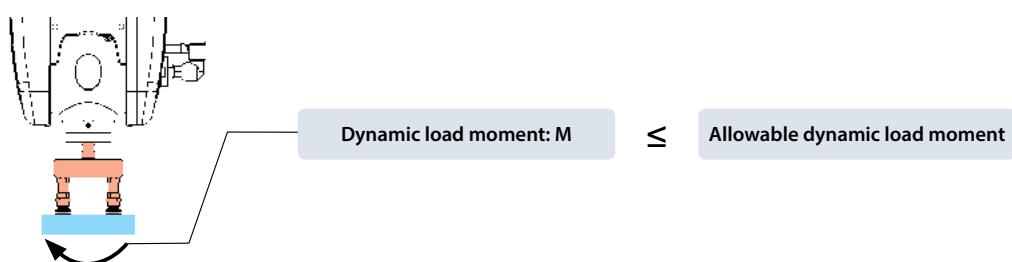
Check the moment of inertia

The allowable moment of inertia of the Wrist Unit decreases to the extent that load torque is applied to the B- and T-axes.


First, calculate the load torque and obtain the corrected allowable moment of inertia.

Step 3

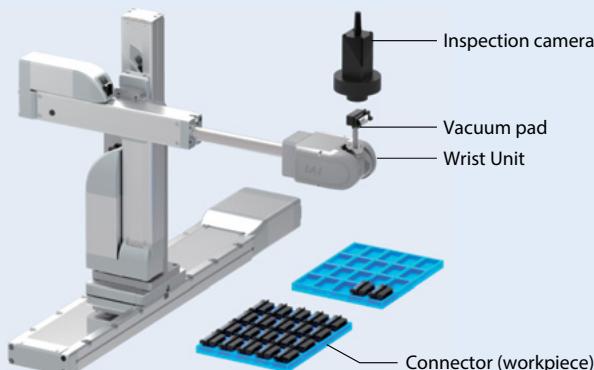
Check the allowable dynamic thrust load


Make sure that the thrust load (load perpendicular to the mounting surface) does not exceed the allowable dynamic thrust load.

Step 4

Check the allowable dynamic load moment

Make sure that the load moment does not exceed the allowable dynamic moment.



Reference Data

Model Selection Example: Automotive Connector Inspection Equipment

The model selection example given is based on the application example "Automotive connector inspection equipment" (P. 3).

Automotive connector inspection equipment

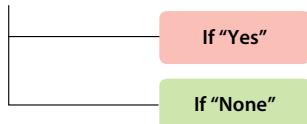
[Overview]

This device inspects the external view of connectors for automobiles, using a camera. The Wrist Unit rotates the connector for inspection from various angles.

Step 1 Check the weight of the transported object

<Weight of transported object = weight of tool
+ weight of workpiece>

	Maximum load weight
WU-S: Compact type	1kg
WU-M: Medium type	2kg

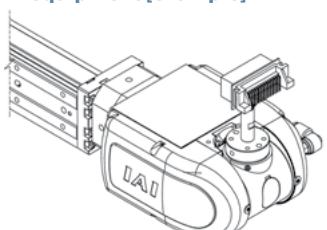

$$\text{Transported object} = \begin{array}{c} \text{Piping/vacuum pad} \\ + \\ \text{Connector} \end{array} = 0.033[\text{kg}]$$

0.02[kg] + 0.013[kg]

Both WU-S (compact) and WU-M (medium) can be used

Step 2 Check the moment of inertia

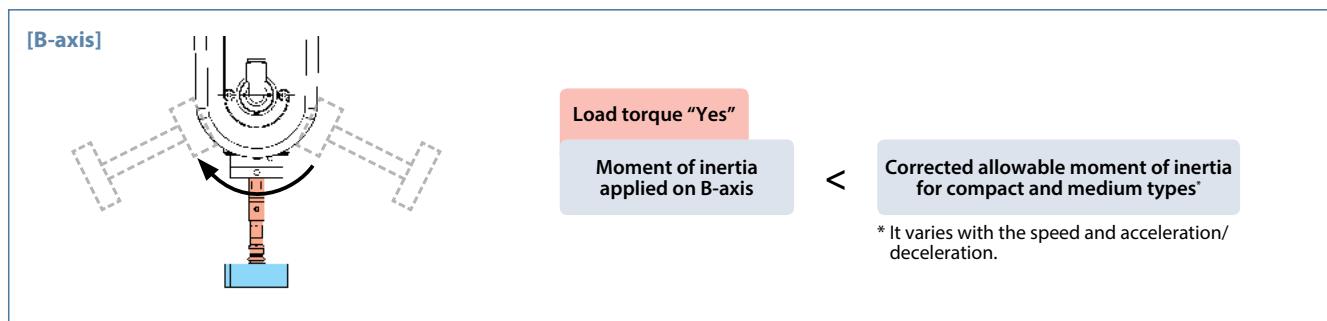
Check the presence of load torque on the B- and T-axes


- Calculate the load torque and obtain the corrected allowable moment of inertia. Then calculate the moment of inertia and check that it does not exceed the allowable value.
- Calculate the moment of inertia and confirm that it is less than the allowable moment of inertia.

Conditions in which load torque is applied

Installation orientation	Presence of load torque				
	(1)	(2)	(3)	(4)	(5)
Gravity ↓	Yes	Yes	None	Yes	Yes
B-axis	None	Yes	None	Yes	Yes
T-axis				None	

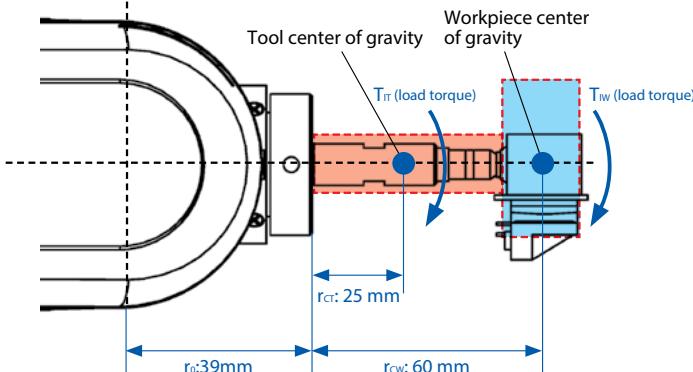
As the current example of the "automotive connector inspection equipment" corresponds to these, the B-axis and T-axis are calculated and confirmed as described below.


Automotive connector inspection equipment [example]

1 [B-axis] Load torque "Yes"

2 [T-axis] Load torque "None"

1. Check B-axis



(1) Calculating load torque T_l

T_{tr} : Load torque due to tool weight [N·m]
 T_{tw} : Load torque due to workpiece weight [N·m]
 m_t : Tool weight [kg]
 m_w : Workpiece weight [kg]
 g : Gravitational acceleration [m/s^2]
 r_o : Mounting surface distance [mm]
 r_{ct} : Tool center mass location [mm]
 r_{cw} : Workpiece center mass location [mm]

$$\begin{aligned}
 T_l &= T_{tr} + T_{tw} \\
 &= m_t \cdot g \cdot (r_o + r_{ct}) \times 10^{-3} + m_w \cdot g \cdot (r_o + r_{cw}) \times 10^{-3} \\
 &= 0.02 \times 9.8 \times (39+25) \times 10^{-3} + 0.013 \times 9.8 \times (39+60) \times 10^{-3} \\
 &= \mathbf{0.025 \text{ [Nm]}}
 \end{aligned}$$

Calculation result

(2) Calculating the allowable moment of inertia correction factor C_j

$$C_j = \frac{T_{max} - T_l}{T_{max}}$$

T_{max} : Output torque (right table) [Nm]
 T_l : Load torque calculation result (1)

[Operating conditions of the Wrist Unit]

B-axis rotation Speed: **600** [deg/s]
Acceleration: **0.3** [G]

First, calculate with the value for the compact type (S)

$$\begin{aligned}
 C_j &= \frac{T_{max} - T_l}{T_{max}} \\
 &= \frac{0.58 - 0.025}{0.58} \\
 &= \mathbf{0.96}
 \end{aligned}$$

Calculation result

■ Output torque by speed [Nm]

WU-S: Compact type

Speed deg/s	B-axis	T-axis
0	0.65	0.65
150	0.65	0.65
300	0.62	0.62
450	0.6	0.6
600	0.58	0.58
750	0.52	0.52
900	0.45	0.45
1050	0.45	0.45
1200	0.45	0.45

WU-M: Medium type

Speed deg/s	B-axis	T-axis
0	1.65	1.65
150	1.65	1.65
300	1.65	1.65
450	1.65	1.65
600	1.58	1.58
750	1.36	1.36
900	1.14	1.14
1050	0.96	0.96
1200	0.79	0.79

(3) Calculating the corrected allowable moment of inertia J_{tl}

$$J_{tl} = J_{max} C_j (\text{kgm}^2)$$

J_{max} : Allowable moment of inertia (right table) [kgm^2]
 C_j : Allowable moment of inertia correction factor calculation result (2)

$$J_{tl} = \mathbf{0.008 \times 0.96}$$

Calculation result

■ Allowable moment of inertia by speed/acceleration [kgm^2]

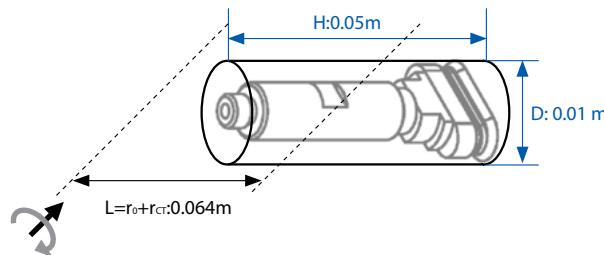
WU-S: Compact type

Speed deg/s	B-axis Acceleration/deceleration	T-axis Acceleration/deceleration
0	0.008	0.0035
150	0.008	0.0035
300	0.008	0.0035
450	0.008	0.0035
600	0.008	0.0035
750		0.0035
900		0.0035
1050		0.0035
1200		0.0025

WU-M: Medium type

Speed deg/s	B-axis Acceleration/deceleration	T-axis Acceleration/deceleration
0	0.0150	0.0126
150	0.0150	0.0126
300	0.0118	0.0072
450	0.0055	0.0054
600	0.0055	0.0054
750		0.0054
900		0.0036
1050		0.0036
1200		0.0036

(4) Checking the moment of inertia of the transported object


Using the Formulae for calculating moment of inertia of typical shapes (P.12), calculate the moment of inertia of the tool and workpiece to be used and make sure they do not exceed the corrected allowable moment of inertia (4) \leq (3) obtained in (3).

Points

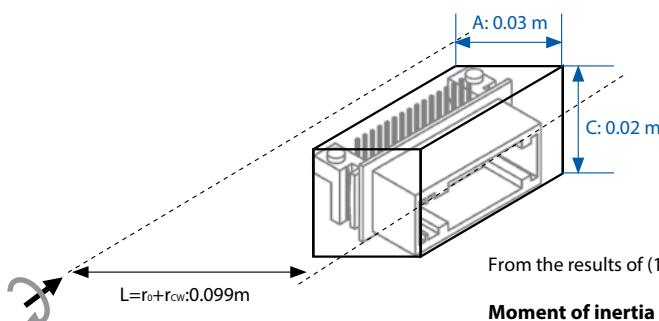
Calculations can be made easier by posing simplified shapes for transported objects such as tools and workpieces.

(1) Moment of inertia of piping/vacuum pad: J_{BT}

Calculation when simplified to cylinder

P.12 2. (5) formula used

m_r : Cylinder weight 0.02 [kg]
 D : Cylinder diameter 0.01 [m]
 H : Cylinder length 0.05 (m)


$$J_{BT} = \frac{m_r(\frac{D^2}{4} + \frac{H^2}{3})}{4} + m_r(r_o + r_{cw})^2$$

$$= \frac{0.02 \times (\frac{0.01^2}{4} + \frac{0.05^2}{3})}{4} + 0.02 \times (0.039 + 0.025)^2$$

$$= 8.62 \times 10^{-5}$$

(2) Moment of inertia of connector: J_{BW}

Calculation when simplified to cuboid

P.12 2. (6) formula used

$$J_{BW} = \frac{m_w(A^2 + C^2)}{12} + m_w(r_o + r_{cw})^2$$

$$= \frac{0.013 \times (0.03^2 + 0.02^2)}{12} + 0.13 \times (0.039 + 0.06)^2$$

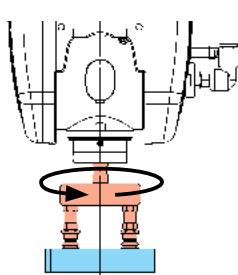
$$= 1.28 \times 10^{-4}$$

m_w : Cuboid weight 0.013 [kg]
 A : One side of cuboid 0.03 [m]
 C : One side of cuboid 0.02 [m]

From the results of (1) and (2)

Moment of inertia of transported object around B-axis

$$= J_{BT} + J_{BW}$$


$$= 8.62 \times 10^{-5} + 1.28 \times 10^{-4}$$

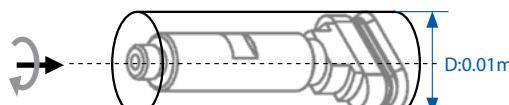
$$= 2.1 \times 10^{-4}$$

Usable, as it is less than the corrective allowable moment of inertia obtained in (3)

2. Checking T-axis

[T-axis]

Load torque "None"

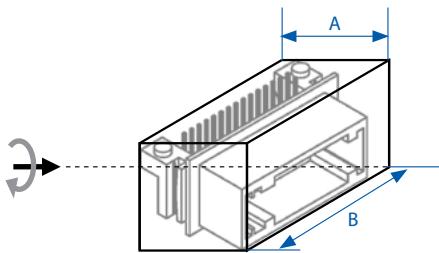

Moment of inertia applied on T-axis

Allowable moment of inertia for compact and medium types *

* It varies with the speed and acceleration/deceleration.

If load torque is not applied, using the Formulae for calculating moment of inertia of typical shapes (P.12), calculate the moment of inertia of the tool and workpiece to be used and make sure they do not exceed the corrected allowable moment of inertia.

(1) Moment of inertia of piping/vacuum pad: J_{TT}


P.12 2. (1) formula used

m_r : Cylinder weight 0.02 [kg]
 D : Cylinder diameter 0.01 [m]

$$J_{TT} = \frac{m_r \times D^2}{8}$$

$$= \frac{0.02 \times 0.01^2}{8}$$

$$= 2.50 \times 10^{-7}$$

(2) Moment of inertia of the connector: J_{TW}

P.12 1. (3) formula used

$$J_{TW} = \frac{m_w(A^2+B^2)}{12}$$

$$= \frac{0.013 \times (0.03^2 + 0.05^2)}{12}$$

$$= 3.68 \times 10^{-6}$$

m_w : Cuboid weight 0.013 [kg]
 A: One side of cuboid 0.03 [m]
 B: One side of cuboid 0.05 [m]

From the results of (1) and (2)

Moment of inertia of transported object around T-axis

$$= J_{TR} + J_{TW}$$

$$= 2.50 \times 10^{-7} + 3.68 \times 10^{-6}$$

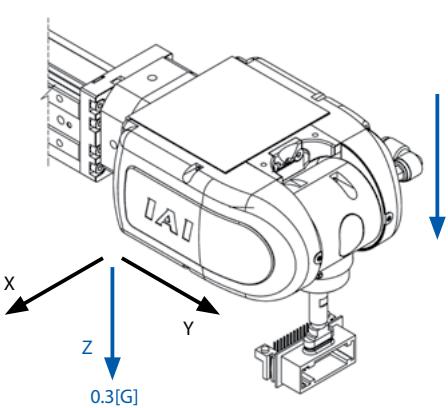
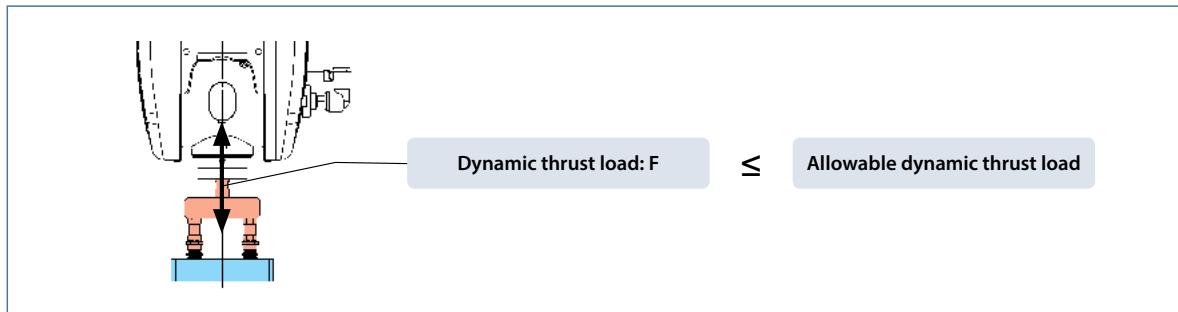
$$= 3.9 \times 10^{-6} [\text{kgm}^2]$$

From the allowable moment of inertia (table below), we see that WU-S (compact) can be used

[Operating conditions of the Wrist Unit]

T-axis rotation speed: 600 [deg/s]
 Acceleration: 0.3 [G]

■ Allowable moment of inertia by speed/acceleration [kgm^2]



WU-S: Compact type

Speed deg./s	B-axis		T-axis	
	0.3G	0.7G	0.3G	0.7G
0	0.0085	0.0065	0.0075	0.0035
150	0.0085	0.0065	0.0075	0.0035
300	0.0085	0.005	0.0065	0.0035
450	0.0085	0.005	0.0065	0.0025
600	0.0085	0.005	0.0065	0.0025
750		0.005	0.0065	0.0025
900			0.0065	0.0025
1050			0.0065	0.0025
1200			0.0065	0.0025

WU-M: Medium type

Speed deg./s	B-axis		T-axis	
	0.3G	0.7G	0.3G	0.7G
0	0.0150	0.0145	0.0165	0.0126
150	0.0150	0.0145	0.0165	0.0126
300	0.0150	0.0127	0.0165	0.0090
450	0.0099	0.0045	0.0126	0.0063
600	0.0090	0.0036	0.0108	0.0054
750		0.0036	0.0099	0.0054
900		0.0036	0.0099	0.0045
1050			0.0081	0.0045
1200			0.0081	0.0045

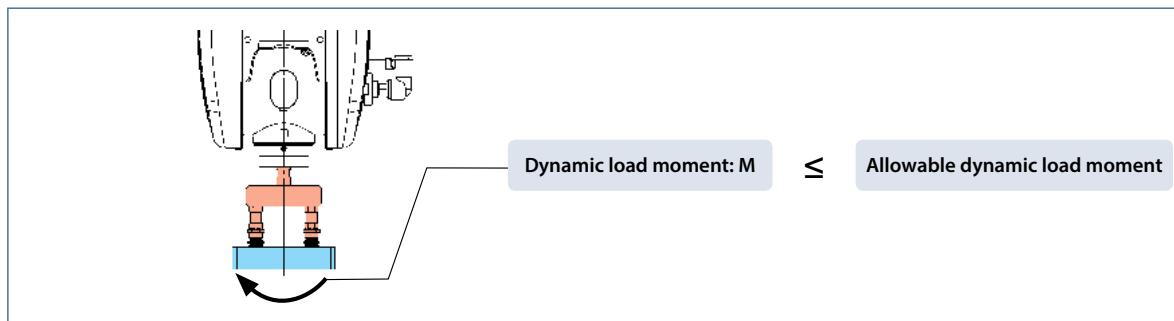
Step 3 Check the allowable dynamic thrust load

$$F = (m_T + m_w) \cdot (a + g) \cdot 9.8 [N]$$

m_T : Tool weight 0.02 [kg]
 m_w : Workpiece weight 0.013 [kg]
 g : Gravitational acceleration 1.0 [G]
 a : Travel acceleration of Z-axis 0.3 [G]

$$F = (0.02 + 0.13) \times (0.3 + 1.0) \times 9.8$$

$$= 0.033 \times 1.3 \times 9.8$$


$$= 0.42 [N]$$

From the allowable dynamic thrust load (table below), we see that WU-S (compact) can be used

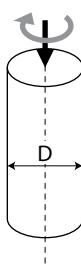
■ Allowable dynamic thrust load

	Allowable thrust load
WU-S: Compact type	330N
WU-M: Medium type	450N

Step 4 Check the allowable dynamic load moment

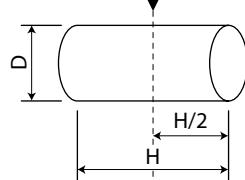
$M = m_t \cdot a \cdot 9.8 \cdot (L_o + r_{ct}) \times 10^{-3} + m_w \cdot a \cdot 9.8 \cdot (L_o + r_{cw}) \times 10^{-3}$ [Nm]	$M = 0.02 \cdot 0.3 \cdot 9.8 \cdot (17.5 + 25) \times 10^{-3}$ $+ 0.013 \cdot 0.3 \cdot 9.8 \cdot (17.5 + 60) \times 10^{-3}$ $= 0.025 + 0.030$ $= 0.055$ [Nm]						
<p> m_t: Tool weight 0.02 [kg] m_w: Workpiece weight 0.013 [kg] a: Travel acceleration of X-axis 0.3 [G] L_o: Load center of mass position WU-S (Compact) 17.5 [mm] WU-M (Medium) 21.5 [mm] r_{ct}: Tool center mass location 25 [mm] r_{cw}: Workpiece center mass location 60 [mm] </p>	<p>From the allowable dynamic moment (table below), we see that WU-S (compact) can be used</p> <p>Allowable dynamic load moment</p> <table border="1"> <thead> <tr> <th></th><th>Allowable dynamic load moment</th></tr> </thead> <tbody> <tr> <td>WU-S: Compact type</td><td>1.4Nm</td></tr> <tr> <td>WU-M: Medium type</td><td>4.2Nm</td></tr> </tbody> </table>		Allowable dynamic load moment	WU-S: Compact type	1.4Nm	WU-M: Medium type	4.2Nm
	Allowable dynamic load moment						
WU-S: Compact type	1.4Nm						
WU-M: Medium type	4.2Nm						

WU-S (compact) can be used, as seen from the results of steps 1 to 4


Formulae for calculating moment of inertia of typical shapes

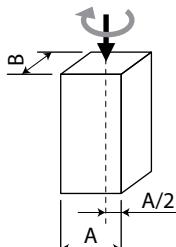
1. When the rotational axis passes through the center of the object

(1) Moment of inertia of cylinder 1


* The same formula can be applied irrespective of the height of the cylinder (also for circular plate)

$$\text{Formula: } I = M \times D^2 / 8$$

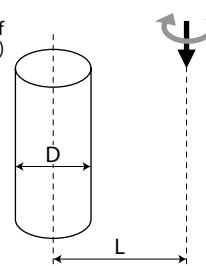
(2) Moment of inertia of cylinder 2


$$\text{Formula: } I = M \times (D^2 / 4 + H^2 / 3) / 4$$

(3) Moment of inertia of prism 1

* The same formula can be applied irrespective of the height of the prism (also for rectangular plate)

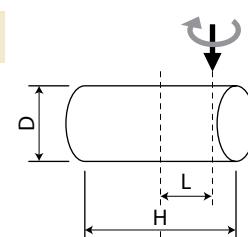
$$\text{Formula: } I = M \times (A^2 + B^2) / 12$$


Moment of inertia of prism: I (kg·m²)
 One side of prism: A (m)
 One side of prism: B (m)

2. When the center of the object is offset from the rotational axis

(4) Moment of inertia of cylinder 3

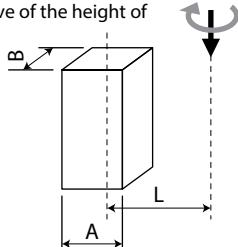
* The same formula can be applied irrespective of the height of the cylinder (also for circular plate)


$$\text{Formula: } I = M \times D^2 / 8 + M \times L^2$$

(5) Moment of inertia of cylinder 4

$$\text{Formula: } I = M \times (D^2 / 4 + H^2 / 3) / 4 + M \times L^2$$

Moment of inertia of cylinder: I (kg·m²)
 Cylinder weight: M (kg)
 Cylinder diameter: D (m)
 Cylinder length: H (m)
 Distance from rotational axis to center: L (m)



(6) Moment of inertia of prism 2

* The same formula can be applied irrespective of the height of the prism (also for rectangular plate)

$$\text{Formula: } I = M \times (A^2 + B^2) / 12 + M \times L^2$$

Moment of inertia of prism: I (kg·m²)
 Prism weight: M (kg)
 One side of prism: A (m)
 One side of prism: B (m)
 Distance from rotational axis to center: L (m)

WU-S						Battery-less Absolute	Compact type	24v Stepper Motor
■ Model Specification Items	WU	S	WA	PM1				
Series	—	Type	—	Encoder Type	—	Applicable Controllers	—	
S: Compact Type	—	WA: Battery-less Absolute	—	PM1: MSEL	—	Cable Length	—	Options
* Does not include a controller					N: None			Refer to Options table below.
* Please refer to P.4 for more information about the model specification items.					P: 1m			
					S: 3m			
					M: 5m			
					X <input type="checkbox"/> Specified Length			
					R <input type="checkbox"/> Robot Cable			

* Please refer to P.6 for more information on the installation method and orientation.
* Please refer to P.4 for more information about the model specification items.

When making a selection, it is necessary to calculate the moment of inertia of the operating conditions and to use a model that allows that moment of inertia. Calculate the moment of inertia of the transported object for the B- and T-axes respectively. Please refer to "Model Selection Process (P.7 on)" for more information.

(Note 1) Shows maximum set speed with no load.

(Note 2) When the rotational axes of the B-axis and T-axis are horizontal with respect to the floor surface or when the center of gravity of the transported object is offset from the rotational axis, the unit will be subject to load torque due to the weight of the object. The allowable moment of inertia decreases when load torque is present. Please refer to "Model Selection Process (P.7 on)" for more information.

Actuator Specifications

Model	Axis configuration	Operation range (deg.)	Max. speed ^(Note 1) (deg/s)		Max. payload (kg)	Max. acceleration/deceleration (G)	
			Independent operation	Simultaneous operation of the B- and T-axes		Without load torque ^(Note 2)	With load torque ^(Note 2)
WU-S-WA-PM1-① - ②	B-axis (wrist swing)	±100	750	600	1	0.7 G (6865 deg/s ²)	0.3 G (2942 deg/s ²)
	T-axis (wrist rotation)	±360	1200	600		0.7 G (6865 deg/s ²)	0.3 G (2942 deg/s ²)

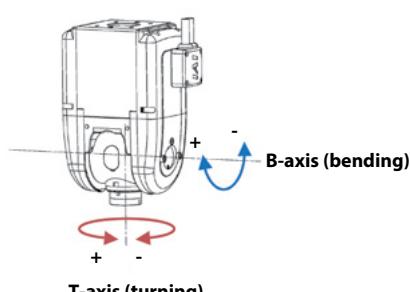
Legend: ① Cable length ② Options

*1 G = 9807 deg/s²

② Options

Name	Option code	Reference page
Cable exit direction (Right)	A1	See P.5, P.14
Cable exit direction (Bottom)	A2	See P.5, P.14
Cable exit direction (Left)	A3	See P.5, P.14
Actuator's pitail cable length change	AC1.5	See P.5, P.14
Cable (air fitting) in opposite position	CVR	See P.5, P.14
With air fitting	VC	See P.5, P.14
With wiring collar	WCS	See P.5, P.14

① Cable Length <per axis *1>


Type	Cable code
Standard type	P(1m)
	S(3m)
	M(5m)
Specified length	X06(6m) to X10(10m)
	X11(11m) to X15(15m)
	X16(16m) to X20(20m) *2
	R01(1m) to R03(3m)
	R04(4m) to R05(5m)
	R06(6m) to R10(10m)
Robot cable	R11(11m) to R15(15m)
	R16(16m) to R20(20m) *2

Cable between actuator and controller.

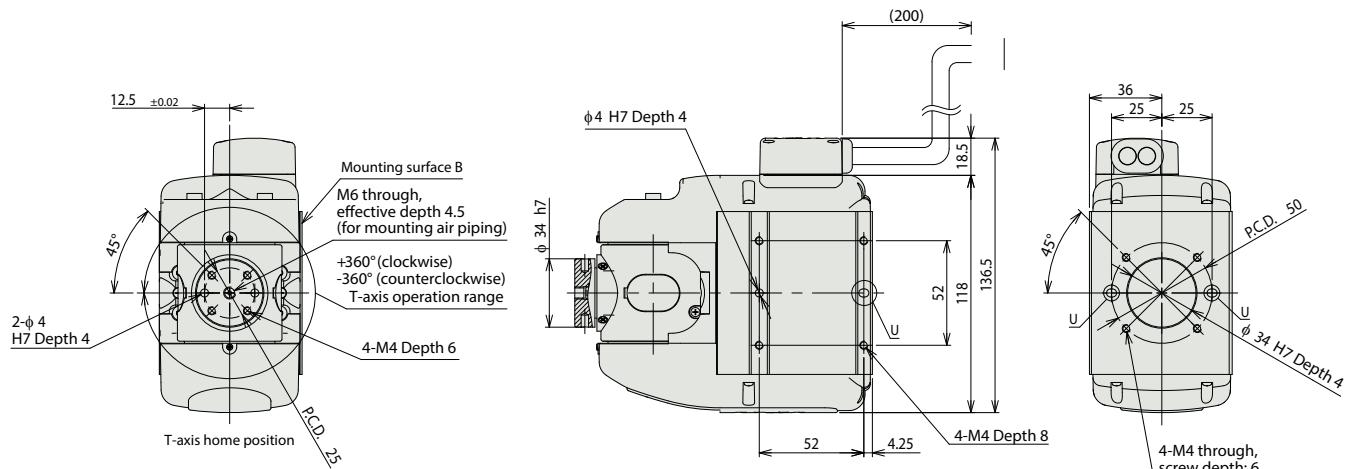
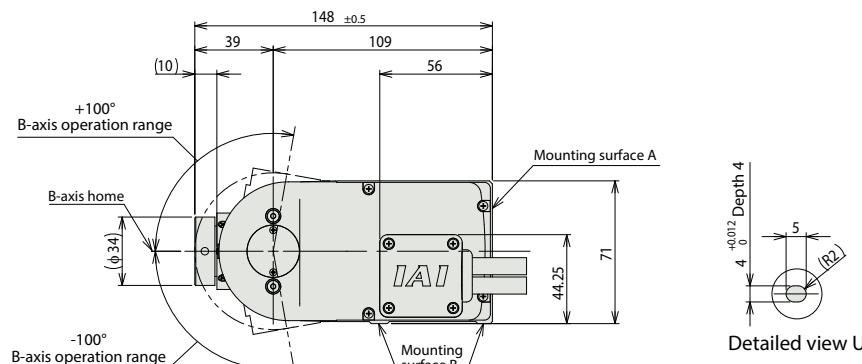
*1 Required for both B- and T-axes. Select the cable length in the model name to have 2 cables attached.

*2 When Actuator's pitail cable length change "AC1.5" is selected as an option, 18 m (X18, R18) will be the maximum length.

Name and Coordinates of Each Axis

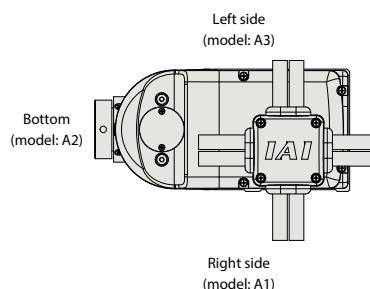
Actuator Specifications

Item	Description	
	B-axis (wrist swing)	T-axis (wrist rotation)
Drive system	Stepper motor + timing belt	Stepper motor + timing belt + bevel gear
Positioning repeatability	±0.015 deg.	±0.15 deg.
Lost motion	0.06 degrees	0.4 degrees
Allowable dynamic thrust load *1		330N
Allowable dynamic load moment *1		1.4N·m
Unit weight		1.6kg
Brake retaining torque *2	0.96N·m	0.96N·m
Ambient operating temperature, humidity	0~40°C, 85% RH or less (Non-condensing)	

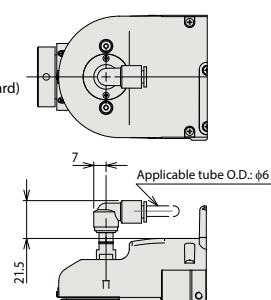


*1 Using the unit with a load exceeding the values above leads to reduced service life and/or damage.

*2 Equipped with brake as standard.

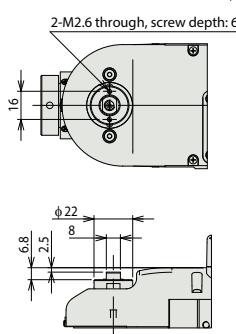
Dimensions

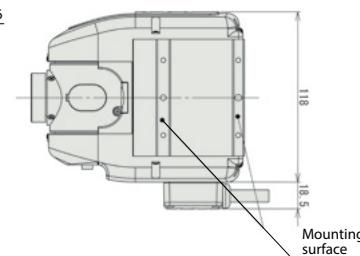

CAD drawings can be downloaded from our website.
www.intelligentactuator.com

2D CAD 3D CAD



Options


■ Cable exit direction


■ Air fitting (model: VC)

■ Wiring collar (model: WCS)

■ Cable (air fitting) opposite position (model: CVR)

Applicable Controllers

Name	External view	Max. number of connectable axes	Power supply voltage	Control method				Maximum number of positioning points	Reference page
				Positioner	Pulse-train	Program	Network * selection		
MSEL-PC/PG		4	Single phase 100 to 230 V AC	—	—	●	DeviceNet EtherCAT PROFINET EtherNet/IP PROFINET	CC-Link EtherNet/IP PROFINET	30000 See P.15

* Please contact our sales representative for control using expanded motion control with the XSEL-RA/SA controller. (See P. 19)

WU-M						Battery-less Absolute	Medium type	24v Stepper Motor
■ Model Specification Items	WU	M	WA	PM1				
Series	Type	Encoder Type	Applicable Controllers		Cable Length		Options	
M: Medium Type	WA: Battery-less Absolute	PM1:MSEL			N: None P: 1m S: 3m M: 5m	X□□ : Specified Length R□□ : Robot Cable	Refer to Options table below.	

* Does not include a controller

* Please refer to P.4 for more information about the model specification items.

* Please refer to P.6 for more information on the installation method and orientation.

When making a selection, it is necessary to calculate the moment of inertia of the operating conditions and to use a model that allows that moment of inertia. Calculate the moment of inertia of the transported object for the B- and T-axes respectively. Please refer to "Model Selection Process (P.7 on)" for more information.

(Note 1) Shows maximum set speed with no load.

(Note 2) When the rotational axes of the B-axis and T-axis are horizontal with respect to the floor surface or when the center of gravity of the transported object is offset from the rotational axis, the unit will be subject to load torque due to the weight of the object. The allowable moment of inertia decreases when load torque is present. Please refer to "Model Selection Process (P.7 on)" for more information.

Actuator Specifications

Model	Axis configuration	Operation range (deg.)	Max. speed ^(Note 1) (deg/s)		Max. payload (kg)	Max. acceleration/deceleration (G)	
			Independent operation	Simultaneous operation of the B- and T-axes		Without load torque ^(Note 2)	With load torque ^(Note 2)
WU-M-WA-PM1-① - ②	B-axis (wrist swing)	±105	900	600	2	0.7 G (6865 deg/s ²)	0.3 G (2942 deg/s ²)
	T-axis (wrist rotation)	±360	1200	600		0.7 G (6865 deg/s ²)	0.3 G (2942 deg/s ²)

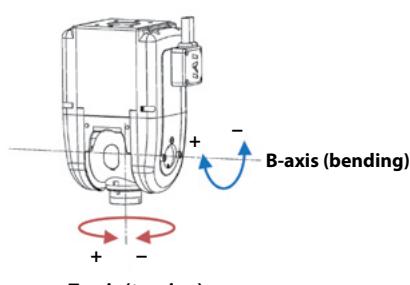
Legend: ① Cable length ② Options

*1 G = 9800 deg/s²

② Options

Name	Option Code	Reference page
Cable exit direction (Right)	A1	See P.5, P.14
Cable exit direction (Bottom)	A2	See P.5, P.14
Cable exit direction (Left)	A3	See P.5, P.14
Actuator's pitgail cable length change	AC1.5	See P.5, P.14
Cable (air fitting) in opposite position	CVR	See P.5, P.14
With air fitting	VC	See P.5, P.14
With wiring collar	WCS	See P.5, P.14

① Cable Length <per axis *1>


Type	Cable code
Standard type	P(1m)
	S(3m)
	M(5m)
Specified length	X06(6m) to X10(10m)
	X11(11m) to X15(15m)
	X16(16m) to X20(20m) *2
	R01(1m) to R03(3m)
	R04(4m) to R05(5m)
	R06(6m) to R10(10m)
Robot cable	R11(11m) to R15(15m)
	R16(16m) to R20(20m) *2

Cable between actuator and controller.

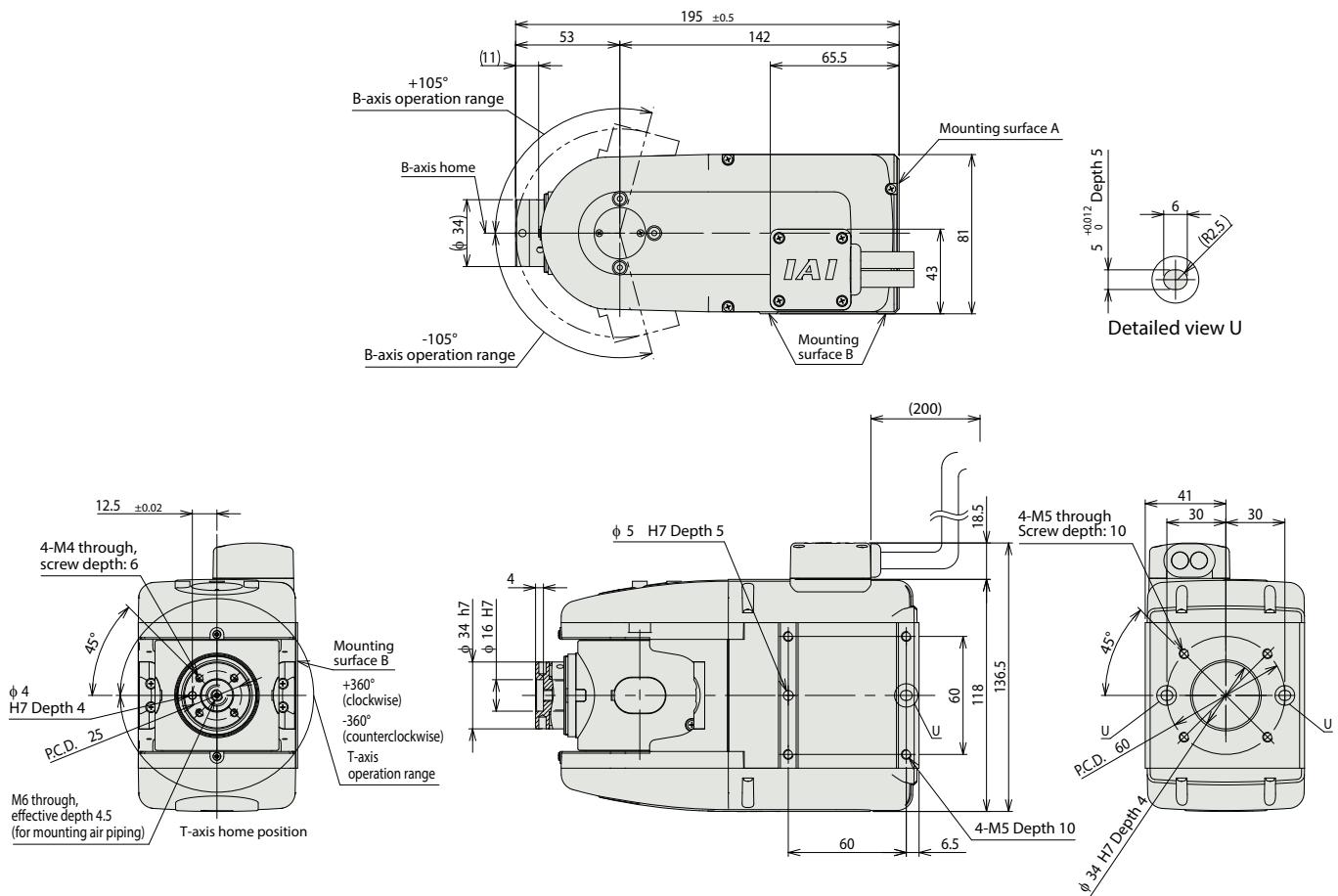
*1 Required for both B- and T-axes. Select the cable length in the model name to have 2 cables attached.

*2 When Actuator's pitgail cable length change "AC1.5" is selected as an option, 18 m (X18, R18) will be the maximum length.

Name and Coordinates of Each Axis

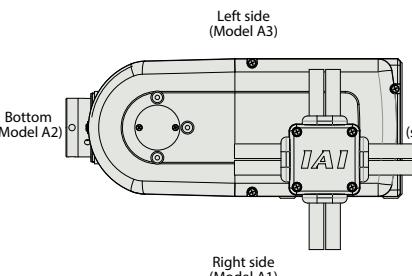
Actuator Specifications

Item	Description	
	B-axis (wrist swing)	T-axis (wrist rotation)
Drive system	Stepper motor + timing belt	Stepper motor + timing belt + bevel gear
Positioning repeatability	±0.015 deg.	±0.15 deg.
Lost motion	0.06 degrees	0.4 degrees
Allowable dynamic thrust load *1		450N
Allowable dynamic load moment *1		4.2N·m
Unit weight		2.8kg
Brake retaining torque *2	2.8N·m	2.8N·m
Ambient operating temperature/humidity	0~40°C, 85% RH or less (Non-condensing)	


*1 Using the unit with a load exceeding the values above leads to reduced service life and/or damage.

*2 Equipped with brake as standard.

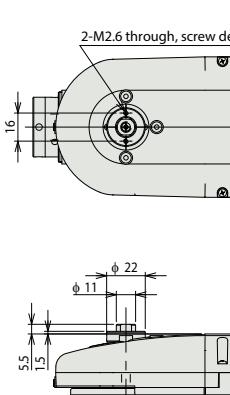
Dimensions

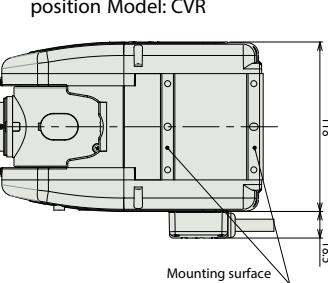

CAD drawings can be downloaded from our website.
www.intelligentactuator.com

2D CAD 3D CAD

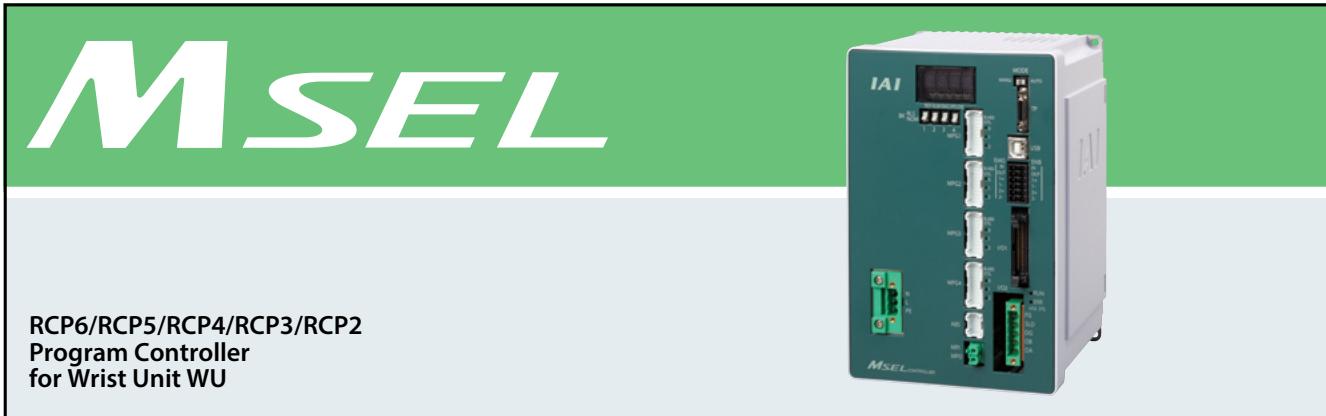


Options


■ Cable exit direction


■ Air fitting (model: VC)

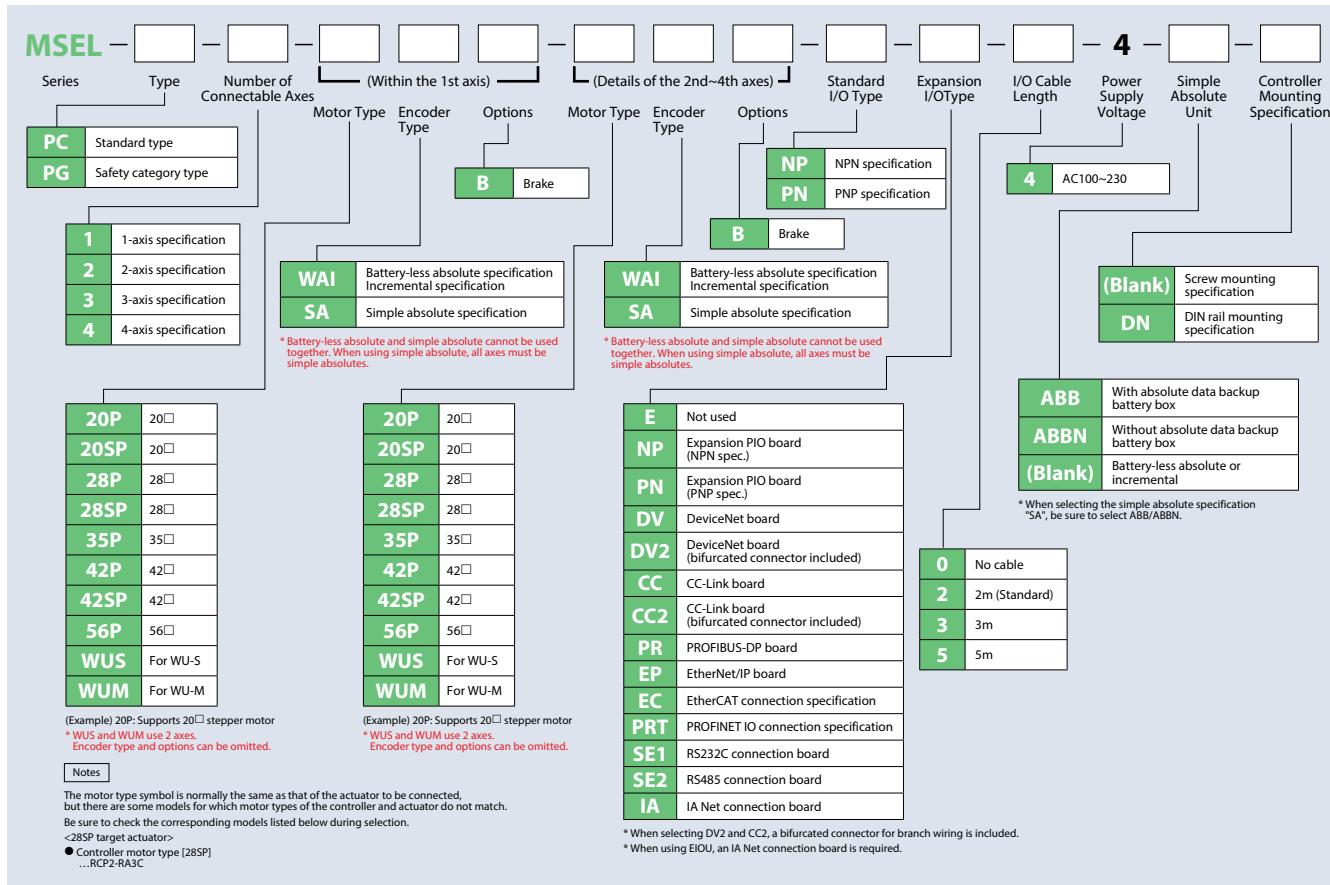
■ Wiring collar (model: WCS)


■ Cable (air fitting) in opposite position Model: CVR

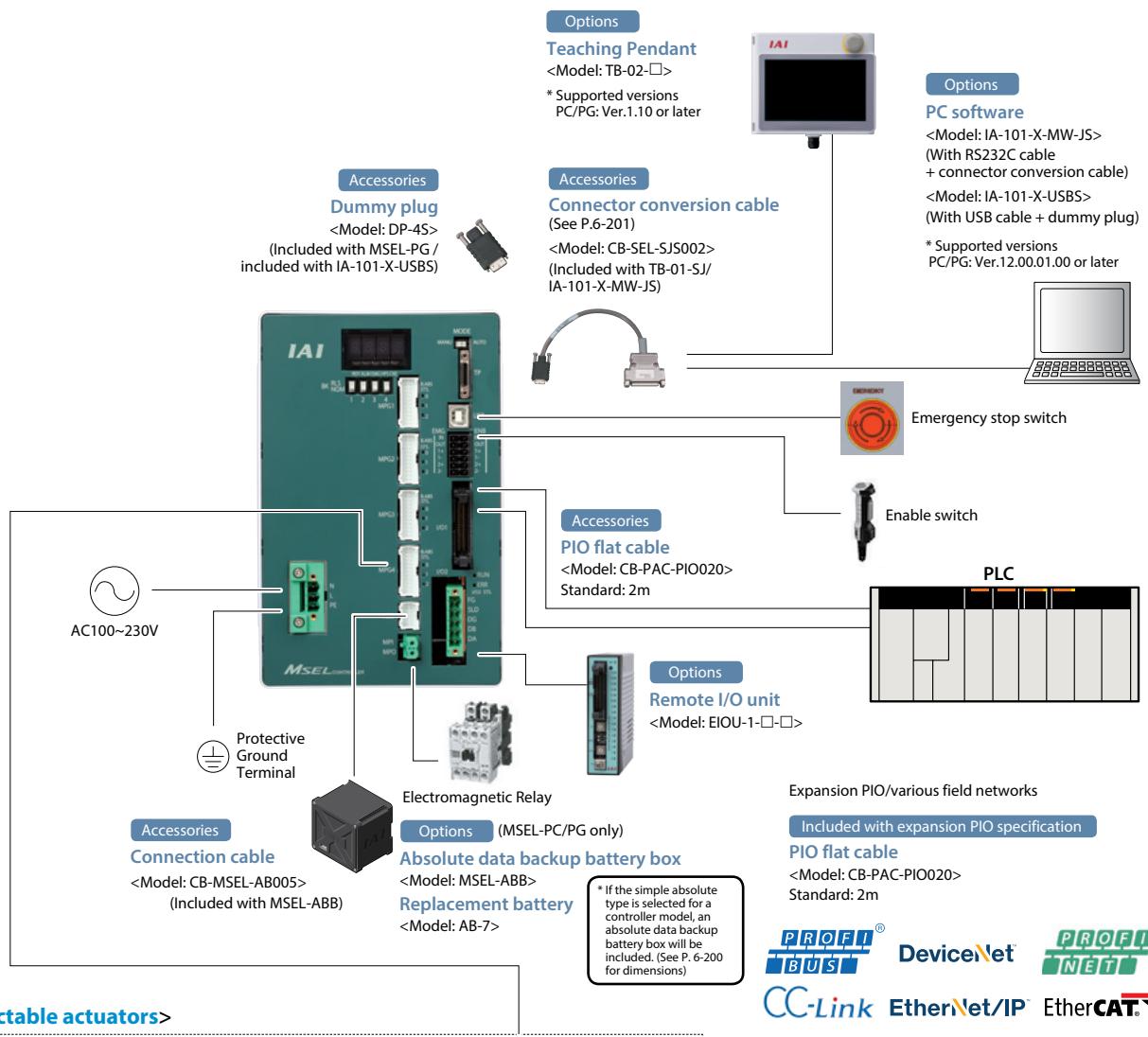
Applicable Controllers

Name	External view	Max. number of connectable axes	Power supply voltage	Control method				Maximum number of positioning points	Reference page
				Positioner	Pulse-train	Program	Network * selection		
MSEL-PC/PG		4	Single phase 100 to 230V AC	—	—	●	DeviceNet EtherCAT® PROFINET EtherNet/IP PROFINET EtherNet/IP	30000	See P.15

* Please contact our sales representative for control using expanded motion control with the XSEL-RA/SA controller. (See P. 19)


List of Models

Program controller enabling operation of RCP6/RCP5/RCP4/RCP3/RCP2 Series actuators. One MSEL controller can handle various forms of control with up to 4-axis.


Type name	PC	PG
Name	Standard type	Safety category type
Max. number of controlled axes	4	
No. of positions	30,000 points	
Power	Single phase 100 to 230V AC	
Safety category	B	3 *1
Standard price	Battery-less Absolute Incremental	1-axis
		2-axis
		3-axis
		4-axis
	Simple absolute	1-axis
		2-axis
		3-axis
		4-axis

*1: To comply with the safety category, the customer will need to install a safety circuit outside the controller.

Model Specification Items

System Configuration

<Connectable actuators>

Integrated Motor-encoder Cable
<Model: CB-PSEP-MPA□□□>
Standard: 1 m/3 m/5 m

Supplied with the actuator

Actuator RCP2 Series

Integrated Motor-encoder Cable
<Model: CB-RPSEP-MPA□□□>
Standard: 1 m/3 m/5 m

Supplied with the actuator

Actuator RCP2 compact rotary

Integrated Motor-encoder Cable
<Model: CB-APSEP-MPA□□□>
Standard: 1 m/3 m/5 m

Supplied with the actuator

Actuator RCP3 Series

* Emergency stop switch, enable switch, electromagnetic relay, and other devices may be connected and wired as necessary. The factory setting with no external devices connected still operates properly.

Integrated Motor-encoder Cable

<Model: CB-CA-MPA□□□>
<Model: CB-CA-MPA□□□-RB>

Standard: 1 m/3 m/5 m

Supplied with the actuator

Actuator RCP4 Series

* Excluding SA3/RA3

Integrated Motor-encoder Cable

<Model: CB-CAN-MPA□□□>
<Model: CB-CAN-MPA□□□-RB>

Standard: 1 m/3 m/5 m

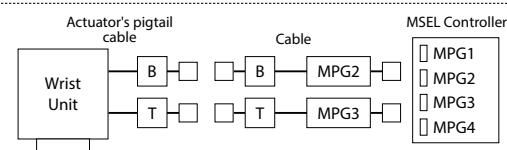
Supplied with the actuator

Actuator RCP5 Series

Integrated Motor-encoder Cable

<Model: CB-CAN-MPA□□□>
<Model: CB-CAN-MPA□□□-RB>

Standard: 1 m/3 m/5 m


Supplied with the actuator

Actuator RCP6 Series

WU Series

Notes

When using the Wrist Unit, connect so that the combination of symbols in "Actuator's pigtail cable", "Cable" and "Controller" will match. The figure on the right is an example when connecting the Wrist Unit to the second and third axes of the MSEL controller.

